

Mohsen Alizadeh Noghani

malizade@nd.edu

December 12, 2025

Education

Ph.D. in Mechanical Engineering	2022–2026 (expected)
University of Notre Dame	<i>Notre Dame, U.S.</i>
GPA: 3.975	
M.Sc. in Applied & Computational Mathematics & Statistics	2022–2025
University of Notre Dame	<i>Notre Dame, U.S.</i>
GPA: 4.00	
M.Sc. in Mechanical Engineering	2019–2021
University of Maine	<i>Orono, U.S.</i>
GPA: 4.00	
B.Sc. in Mechanical Engineering	2013–2018
Ferdowsi University of Mashhad	<i>Mashhad, Iran</i>
GPA: 17.65	

Publications

Mohsen Alizadeh Noghani, Sebastian Green, Edgar Bolívar-Nieto. (2025). **Whole-body optical marker and ground reaction force data of healthy humans performing non-cyclic activities**. *Scientific Data* [\[DOI\]](#)

Mohsen Alizadeh Noghani, Edgar Bolívar-Nieto. (2025). **Predicting center of mass position in non-cyclic activities: The influence of acceleration, prediction horizon, and ground reaction forces**. *Journal of Biomechanics*. [\[DOI\]](#)

Mohsen Alizadeh Noghani* Jingshu Peng*, Edgar Bolívar-Nieto. (2025). **Center of mass estimation during non-cyclic activities: Comparison of marker-based methods and their fusion with ground reaction forces**. *Journal of Biomechanics*. [\[DOI\]](#)

Mohsen Alizadeh Noghani, Ehsan Sharafian M., Ben Sidaway, Babak Hejrati. (2025). **Increasing thigh extension with haptic feedback affects leg coordination in young and older adult walkers**. *Journal of Biomechanics*. [\[DOI\]](#)

Mohsen Alizadeh Noghani, Edgar Bolívar-Nieto. (2024). **Prediction of Whole-Body Center of Mass using Joint Angles and Ground Reaction Forces: A Framework for Human Intent Prediction**. *2024 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob)*. [\[DOI\]](#)

Jacob Bloom, Mohsen Alizadeh Noghani, Babak Hejrati. (2023). **A Wearable Upper Extremity Rehabilitation Device for Inducing Arm Swing in Gait Training**. *2023 International Conference on Rehabilitation Robotics (ICORR)*. [\[DOI\]](#)

Md. Tanzid Hossain, Mohsen Alizadeh Noghani, Ben Sidaway, Babak Hejrati. (2023). **Investigating the Efficacy of a Tactile Feedback System to Increase the Gait Speed of Older Adults**. *Human Movement Science*. [\[DOI\]](#)

Mohsen Alizadeh Noghani, Md. Tanzid Hossein, Babak Hejrati. (2023). **Modulation of Arm Swing Frequency and Gait Using Rhythmic Tactile Feedback**. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*. [\[DOI\]](#)

Mohsen Alizadeh Noghani, Mohsen Shahinpoor, Babak Hejrati. (2022). **Design and Validation of a Smartphone-based Haptic Feedback System for Gait Training**. *IEEE Robotics and Automation Letters*. [\[DOI\]](#)

*Co-first authors.

Mohsen Alizadeh Noghani, Drew Browning, Vincent Caccese, Elizabeth DePoy, Stephen Gilson, Ryan Beaumont, Babak Hejrati. (2021). **Design and Evaluation of the Afari: A Three-wheeled Mobility and Balance Support Device for Outdoor Exercise.** *Assistive Technology.* [\[DOI\]](#)

Conference abstracts & presentations

Mohsen Alizadeh Noghani, Edgar Bolivar-Nieto. (2024) **A Framework for Prediction of Center of Mass Trajectory, Workshop: AI-Based Estimation and Control of Wearable Robotic Systems for Enhancing Human Mobility, BioRob 2024, Heidelberg, Germany**

Mohsen Alizadeh Noghani, Edgar Bolivar-Nieto. (2024). **A Framework for Prediction of Center of Mass Trajectory.** *Dynamic Walking 2024. Pensacola, FL, U.S.* [\[Video abstract\]](#) [\[Poster\]](#)

Mohsen Alizadeh Noghani, Edgar Bolivar-Nieto. (2023). **Prediction of Human Center of Mass Position from Ground Reaction Forces.** *2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Detroit, MI, U.S.* [\[Abstract\]](#) [\[Poster\]](#)

Mohsen Alizadeh Noghani, Mohsen Shahinpoor, Babak Hejrati (2021). **Design and Validation of a Smartphone-based Haptic Feedback System for Gait Training.** *2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Virtual.* [\[Video presentation\]](#)

Theses

Development of a Novel Haptic Feedback System for Gait Training Applications. (2021). *University of Maine.* [\[PDF\]](#)

Analysis and Optimization of a 4-UPS Parallel Robot. (2018). *Ferdowsi University of Mashhad.*

Experience

Wearable Robotics Lab, University of Notre Dame 2022-present
Research Assistant *Notre Dame, U.S.*

- Development of predictive control methods for robotic prosthetic legs

Department of Aerospace and Mechanical Engineering, University of Notre Dame 2022-present
Teaching Assistant *Notre Dame, U.S.*

- Teaching Assistant for “Design of Machine Elements”, “Intermediate Controls”, “AME Laboratory II”, “Differential Equations, Vibrations, and Control I”

Biorobotics & Biomechanics Lab, University of Maine 2019-2022
Research Assistant *Orono, ME*

- Developed a wireless haptic feedback system for gait training controlled by a smartphone
- Contributed to the NIH R15 grant ”A Wearable Haptic Feedback System for Home-based Gait Training for Older Adults” and the NSF CAREER grant ”Interlimb Neural Coupling to Enhance Gait Rehabilitation”

Department of Mechanical Engineering, University of Maine 2019-2021
Teaching Assistant *Orono, ME*

- Teaching Assistant for “Robot Dynamics and Control”, “Engineering Dynamics”, and “Mechanism Analysis and Design”

FUM Center for Advanced Rehabilitation and Robotics Research (FUM CARE) 2017-2019
Undergraduate Research Assistant *Mashhad, Iran*

- Developed a real-time EtherCAT motion control system in PREEMPT_RT Linux (worst-case jitter: 37 μ s. 99.5 percentile jitter: less than 6 μ s)
- Optimized the design of a 4-UPS parallel robot for a large workspace, small size, and low power usage using the genetic algorithm

Professional activities

Peer review

- IEEE Robotics and Automation Letters; AAAI Conference on Artificial Intelligence (AAAI); IEEE Journal of Translational Engineering in Health & Medicine; BMC Sports Science, Medicine and Rehabilitation; BMC Geriatrics; Scientific Data; Journal of NeuroEngineering and Rehabilitation; Scientific Reports; IEEE Transactions on Neural Systems and Rehabilitation Engineering; BioMedical Engineering OnLine; IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob); IEEE International Conference on Robotics and Automation (ICRA)

Training

- Bootlin Real-Time Linux with PREEMPT_RT [\[Certificate\]](#)
- Bootlin Embedded Linux Kernel and Driver Development [\[Certificate\]](#)

Membership

- American Society of Biomechanics (ASB) 2024-present

Courses

Statistics, mathematics, robotics

- Applied Probability; Applied Bayesian Statistics; Advanced Biostatistical Methods; Statistical Inference; SQL for Data Science; Applied Linear Models; Statistical Methods in Data Mining and Prediction; Deep Neural Networks; Optimization for Data Science; Applied Generalized Linear Models; Spatio-temporal Statistics for Environmental Applications; Basic Topology and Geometry; Optimization-based Robotics; Analytical Dynamics

Computer science and engineering

- Cluster Computing; Embedded Systems; Operating Systems; Computer Vision